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Sintering models and the development 
of instabilities 
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Netherlands Energy Research Foundation ECN, PO Box 1, 1755 ZG Petten, The Netherlands 

A mathematical model is developed to describe, at least approximately, the densification and 
reorganization of a random stacking of particles due to internal transport of material. In this 
model, local stresses due to time varying coordination of particles are allowed which are found 
to alter the overall sintering behaviour significantly. Further, variations on stacking density and 
coordination on both a local and a global scale are investigated for their influence on small 
and large scale particle reorganization during sintering. It is found that these local variations 
will easily give rise to the development of a porosity of high coordination along with local 
densification. The overall effect is that this porosity disappears after a large sintering period 
when grain growth has become already substantial. 

Global variations in coordination are seen to be responsible for defect formation. A number 
of criteria will be derived to estimate under which conditions this formation of defects may 
be expected. The present model will be discussed with the help of own and a number of 
examples found in the literature. 

1. Introduction 
Most of the theories presented until now on the 
sintering of metal or ceramic particles to a dense 
structure are based upon the mutual approach of 
spherical particles of a uniform size, shape and stack- 
ing. Further, for the models to describe the den- 
sification of a material, a macroscopic extension of the 
interactions between the individual particles is gen- 
erally assumed. In this way a statistical mean is found 
where deviations due to local strain fields and stacking 
densities are omitted. Generally, the models proposed 
have proved to be very helpful to relate the observed 
shrinkage due to sintering to more fundamental pro- 
cesses such as lattice, surface, grain boundary diffusion 
or a vapourization condensation mechanism. All the 
models lead to a particular behaviour of the shrinkage 
rate in relation to particle size, porosity and grain 
growth. These models, however, give no indication for 
the development of defects due to reorganization ef- 
fects between the particles mutually but, on the other 
hand, give results for the overall behaviour of a com- 
pact which in most cases can be fitted reasonably well 
to the experimental data. Deviations are normally 
attributed to internal particle rearrangement effects 
and creation of a pore system which is slowly removed 
during progressive sintering. When these deviations 
occur, however, they have a detrimental influence on 
the strength of the materials so that suitable criteria 
have to become available to prevent them. The pur- 
pose of this paper is to formulate a simplified statis- 
tical model starting from simple and generally ac- 
cepted and verified expressions for the two sphere 
approach to describe the densification in a random, 
but locally fluctuating particle packing where also 
stresses are allowed. 

In a second step, a locally fluctuating particle 
packing and collective stresses governing the reorgan- 
ization are allowed. It will be shown that instabilities 
which are defined as extensive reorganization of 
the stacking and substantial pore opening can be 
explained in this way. 

Finally, a number of situations will be presented 
and which can be explained with the help of the 
suggested model. In this model, it is not intended to 
give a rigorous treatment of the rearrangement effects, 
rather the simplest possible and approximate math- 
ematical model will be derived to give at least a 
qualitative description of and insight into the most 
important effects to be expected. 

2. Overall densification as a global 
extension of the two-sphere  
approach 

In the present analysis we will start from the approach 
of Arzt [1] where a random fault free packing is 
described as a relation between the number of particle 
contacts and the average distance between the indi- 
vidual particles. This relation is presented by the fol- 
lowing expression 

G(z) = G o + C(z  - 1) (la) 

where z is the densification parameter, equal to the 
free particle radius divided by half of the centre-to- 
centre distance, G(z) is the coordination number, Go 
the coordination number at z = 1, and C the slope of 
the linearized G(z) 

The differential form is given by 

0z6(z) = Go~(Z - 1) + C (lb) 
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Figure 1 Particle stacking and Voronoj cell (a) before (z = 1, t = 0) and (b) during densification (z > 1, t > 0). 

where 8z is the increase of the densification from the 
initial value z = 1. Further we will use the shorthand 
notation for derivatives ~x = ~/~x,  ~xx = ~2/~x2, at 
= ~/Ot etc. The expression for ~zG(z)  by a normal 6- 

function, which evidently is a simplification, shall be 
shown to be of particular convenience throughout the 

development  of the model. 
Further, each single particle and all material trans- 

port is accommodated during the whole densification 
process in one single cell (Voronoj cell), Fig. 1, such 
that each cell shrinks along with the particle. During 
this process, the dimensionless densification para- 
meter, z, increases from its starting value of z = 1 by 
the amount 6z. 

This approach is different from Artz's analysis [1], 
where the sintering process is visualized as a gradual 
growth of the particle while the cell volume and shape 
are kept constant and which leads to a description of 
the material transport which is scaled up by a factor 
o f z  3. 

Further, there exists a direct connection between 
the overall density of the material and the densific- 
ation parameter z. Starting from the density 9 = 9o at 
z = 1 we find that in the case of a three dimensional 
stacking [1] 

9 
- z 3 ( 2 )  

9o 

where 9o is the initial density and 9 the actual density. 
If the stacking is now allowed to shrink such that no 

transport of material takes place across a cell wall, the 
area where two particles are in contact will initially 
grow rapidly and later more gradually. During this 
process, new contacts between the particles are cre- 
ated, however, due to a mismatch between the rates of 
centre-to-centre approach as a consequence of already 
existing and newly created contact zones, stresses will 
locally develop and influence the material transport in 
a cell and therewith the overall behaviour of the 
compact. If we introduce a parameter z giving the 
reciprocal value of the relative distance from the cell 
face to the particle centre (Fig. 2), we find by geometri- 
cal arguments that the total amount of material to be 
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Figure 2 Neck growth and approach of two spherical particles. 

transported away by any mechanism should be 

7c R 3 
V(r,z,R) - 3 z 3 (2Z3 - -  3TZ2 + T3) (3) 

where ~ is the local integration parameter, R the free 
particle radius, and V the volume. 

The total volume to be transported up to a den- 

f~  V(q z, R)~  G(~) dr 

zR 3 
- 3z 3 Go(z - 1)2(2z + 1) 

CT~R 3 
+ l~Uz~ (z - 1)~(3z + 1) (4) 

To find an expression for the densification of the 
material, we should formally equate this volume to the 
amount of material which can be transported away 
from all the contact zones with the cell faces which 
already exist from the beginning and which are being 
newly created during the process. At this st.age, we 
should consider the transport phenomena more 

sification of z is then 

AV = 



closely in order to take into account the influence from 
local stresses due to mismatch in the ratio for centre-to- 
centre approach of adjacent spheres. 

In the present analysis we will start from the ap- 
proach of Coble [2] and Kingery and Berg [3] and 
consider both lattice and grain boundary diffusion the 
dominant mechanisms for material transport. Trans- 
port due to lattice diffusion results in removal of 
material from the contact area of the particles to the 
neck zone through the interior of the particles. Grain 
boundary diffusion, on the other hand, differs from 
lattice diffusion in that transport occurs along the 
contact zone of neighbouring particles. This area is 
regarded as a predecessor for the grain boundary 
between grains in a densified structure. 

In Appendix 1, it is shown that the expressions for 
centre-to-centre approach can be represented in the 
following way for lattice and grain boundary diffusion, 
respectively, 

A L )  (4~D,  n y t ' ]  1/2 
1 = - ] ( S a )  

\ ~ } (5b) 

where A L / 2 R  is the relative change in the centre-to- 
centre distance of the spheres, cz a geometrical para- 
meter close to 2, f~ the atomic volume, 7 the surface 
energy, co the diffusion zone width, Dl and Db the 
diffusion coefficients for lattice diffusion and bound- 
ary diffusion, respectively. 

If we impose a densification of z = 1 + 6z we will 
have 

AL 
6z - (6) 

2R 

This means that, if during the densification process a 
new contact is created, the approach of the two par- 
ticles initially occurs very rapidly. On the other hand, 
each particle is part of a structure that cannot re- 
organize instantaneously so that tensile stresses in a 
new contact zone and compressive in the older ones 
are generated to modify the transport pattern in such 
a way that the approach rates of the new contacts are 
diminished and the older ones enhanced. In the case 
we are not taking into account this effect of local 
stresses, we will encounter singularities during the 
integration to find the overall shrinkage. 

This problem can be easily circumvented when we 
modify these expressions by defining a total contact 
pressure over all contact surfaces bounded by one 
single cell. Equilibrium requires that the sum of the 
forces in one cell due to mismatch effects should 
vanish and leads to an expression for the modified 
material transport equation. This procedure is given 
in more detail in Appendix 2. 

The total modified transport for both lattice and 
grain boundary diffusion is summed up and equated 
to the expression A V given in Equation 4, to finally 
obtain by setting z = 1 + 6z and linearizing the sys- 
tem (Appendix 2) for lattice diffusion 

d,~z - kTR3~z[_ + fGoo + 6z (Ta) 

and for grain boundary diffusion 

2Dbe~ I t  + ( ~ +  5 ) ~ z ]  (7b) 
d,~z - kTR4( f z )  2 

Obviously the original expression for centre-to-centre 
approach (Equations 5a and 5b) is found in the limit 
for 6z -* 0. These equations show that the creation of 
new contacts between the individual particles may 
give a substantial contribution to the overall sintering 
behaviour, especially in the case of grain boundary 
diffusion which in ceramic systems turns out to be the 
main contribution to the overall effect. It will be 
shown later that it is just this effect that gives rise to 
enhanced defect formation as a consequence of reor- 
ganization. 

For the further development of the theory, it is 
helpful to define an apparent compressibility, q, for 
the particle stacking, therefore we assume an external 
pressure, acting on a matrix, which we imagine for the 
moment to be solely responsible for the densification. 
In the basic equations for matter transfer the action of 
the external pressure is introduced easily by replacing 
Y for 7 + pR/4 (Appendix 1), where in the case of a 
pressure assumed to be responsible for densification 
only we should take the limit for 7 ~ 0. This compress- 
ibility is defined in the following way 

P = qdto = 3qpoz2dtz  = 3qOoz2dtSz (8) 

where p is the pressure. 
In the present case, where reorganization is not yet 

assumed and an overall densification occurs, we can 
find the explicit expressions for rh, b, where the indices 
1 and b refer to lattice and grain boundary diffusion, 
respectively. 

Introducing the expression ? + pR/4, for y into 
Equation 7a or 7b, substituting the results into 
Equation 8 and linearizing for 8z we finally obtaiii 

r h - 3aD1~po - ~-\~o~ + 11 (9a) 

for lattice diffusion and 

qb -- 3~Db0)9o 1 -- ~Z Goo + (9b) 

for grain boundary diffusion. 

3. Occurrence of defects as 
a consequence of internal 
reorganizat ion in a nearly 
random packing 

It is easily shown by geometrical arguments that the 
total covered surface area of a particle in one single 
cell is equal to 

AO(R , z ,  Go, C) = ~R 2 1 -  ~ (r)d~ 

= Go~R 2 1 - z2 + CrcR 2 z - 1 + 

(10) 

where O is the surface area. 
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Assuming the contribution to the free energy, U, 
due to the none covered surface area per cell is most 
important, we find 

U = 7[4rcR 2 -- AO(R,z, Go, C)] 

and the force, F, acting on the particle in the cell due 
to a gradient in the densification parameter z, as well 
as the value of Go and C is given by the expression 

F = - ~xU = 7~AO(R, z, Go, C) (11) 

where an explicit and unique dependence of z, Go and 
C on x has to be assumed. 

This equation formally leads to derivatives of z, G O 
and C and  is important  in determining the nature of 
an instability. To show that this force leads to in- 
stabilities we can write by assuming that Go and C are 
constants 

7~zR2 ~ ( 2Cz33 2C)  ~xz 
F - - \ 2 o 0  + 

for Oxz > 0 we have F > 0 and the force will tend the 
particles to zones where z is the largest, see also Fig. 3. 

At this point, a problem occurs due to the fact that 
we may have a force acting on a particle, while it 
should not necessarily lead to actual displacement of 
the particles themselves. This is most easily seen when 
we calculate the free energy of a particle in relation to 
its distance from the neighbours and conclude that a 
local minimum is found when it finds its centre pre- 
cisely midway. Also the total free energy of a stacking 
in a non-densifying field is found to be a minimum 
when no local departures from homogeneity occur, 
however, when we have a homogeneously densifying 
field superposed on a locally varying Otz, a situation is 
obtained where instabilities develop and the total free 
energy decreases. It is evident, however, that this free 
energy decrease is much lower than in the case of 
homogeneous densification. The condition for this to 
occur is worked out mathematically in Appendix 3 
and leads to a formally more precise definition of the 
free energy to be attributed to the system. 

defec formation 
. . . .  ' 

z ~  

,Ir 

Figure 3 Spatial variation in densification coordination parameters 
leading to collective reorganization of particles. 
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where z(~ +z = 
and 

To find an expression for the total accumulated 
force acting on a particle when a reorganization effect 
occurs in one direction, but which is homogeneous 
over a broad field perpendicular to this direction, we 
should integrate Equation 11, where the boundaries 
are carefully chosen. Two circumstances occur, one for 
a densifying field and one for a field of reducing z. The 
situation is further explained in Fig. 3. 

Starting from 

F = 7~AO(z, R, Go, C)O~z 

the pressure which causes densification and dilution 
which for the present case will be assumed to be 
isotropic, is defined by 

1 (~ Fdx  = 1~R2p (12a) 
2R Jz(~;z = 0) 

with z(~; z = O) = z - �89 where (OxZ = 0) refers to 
the minimum value of z. This  integral attains its 
maximum value for z = z(~ + z = 0) which is equal to 

1 ('z(O;z = o) 

I F dx = rcR:p (12b) 
2R jz(e;z = o) 

0) refers to the maximum value of z 

z(e+x Z = o) = z + �89  Oo( ; z = O) 

= Go + �89 Go(~;z=O) 

= Co- AOo 

= o) - c ( o ; z  = o) = A C  

The actual local pressure obviously is given as a 
function of z(x) by Equation 12a, but since we are only 
interested in the extremum we should integrate up to 
the maximum of z. 

This pressure gives rise to densification which 
should be highest at the location of maximum co- 
ordination and the highest value of z. The densific- 
ation due to this pressure should becompensated by a 
decreasing density. This decrease should be highest 
where the coordination has a minimum, because of the 
symmetry of the problem as expressed by the bound- 
ary conditions of Equation 12b, the fact that the 
densification is linear in the isotropic pressure, 
Equation 8 and also because of continuity of the total 
number of particles involved in the instability, we 
should conclude that the maximum decrease in z i's 
equal to the maximum increase of z where coordina- 
tion is highest. For  the present problem this means 
that we can attribute the pressure given by Equation 
12b to the diluting zone but with a negative sign. 

Substituting Equation 10 into Equation 11 and 
integrating as prescribed by Equation 12b with the 
proper boundary conditions and then linearizing, it is 
found that 

7 (GoA z + AGoSz) (13) P - R 

where second-order terms are neglected. 
Essential for the assumption that complete reorgan- 

ization can take place is a.o. the fact that this pressure 
p, should be isotropic whereas the force responsible for 
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Figure  4 E v o l u t i o n  o f  the  s t a c k i n g  wi th  a n d  w i t h o u t  in t e rna l  r e o r g a n i z a t i o n .  

this pressure acts in one direction. We will return to 
this point later. Further substituting Equation 8 into 
Equation 13 it is found that 

dtz - 7 (GoAz + AGo6z) (14) 
3RpozZq 

which is valid for both lattice and grain boundary 
diffusion and where q is defined by Equation 9a or 
Equation 9b. 

This equation has the following interpretation. We 
have an overall and homogeneous densifying field, 8z, 
leading with a local fluctuation in Go, AGo, to a rate of 
decrease in z. This decrease in z will further grow and 
eventually overtake the influence of AGoSz itself. Tak- 
ing Zo as the amplitude of the instability we should, for 
this reason, substitute - 2Zo for Az and d,zo for d,z 

d t z o  _ 7 (2Goz o -- AGoSz) (15) 
3Rpoz2rl 

At first sight, it may seem curious that a fluctuation in 
the initial density is not primarily responsible for such 
instabilities (which, however, are practically coupled 
to the value of Go and C). That the onset is not a 
consequence of a density fluctuation can be seen from 
Equations 7a or 7b which do not depend on po. Two 
sections of the material with different po'S will initially 
shrink identically. If, for the moment, we take a fixed 
densification 6z and set 

2yGo YAGogz 
a I - -  3RpoqZ2, a 2 = 3RpoqZ 2 (16) 

we find an expression for the time dependence of the 
departure from stability 

dtz o = _ a2exp(alt) 

This equation gives information on the average value 
for the centre-to-centre distance of the adjacent par- 

ticles. It should, however, be remembered that the 
force due to gradients in z, Go and C, which acts locally 
in one direction, gives rise to a rearrangement of the 
stacking such that we end up with an isotropic pre- 
ssure which locally changes the density. Now we 
define a local relative displacement of the particles due 
to densification and reorganization as d t ~ (Fig. 4), we 
should set (Appendix 4) 

3 
d,,~ = - -dtzo (17) 

z 

where ~ is the relative position of the centre of 
the particle. The total change of the centre-to-centre 
distance due to both homogeneous densification 
and defect forming now is the sum of d ~  given in 
Equation 17 and the value of -d~6z given by 
Equation 7a or 7b. This latter is rewritten with the 
help of Equation 9a or 9b as 

4~, 
d t f 3 z  = a 3 - -  

3Rrlz2Po 

The total centre-to-centre distance taken in the direc- 
tion of the displacement leading to the defect is then 
given by 

d ( A q  3 
d,~ + , \ ~ j  = dt~ - dt8z = - z d t Z o  - dtSz 

3 
= - a 2 e x p ( a l t ) -  a 3. (18) 

z 

This equation shows that an initial densification 
occurs which is equal to a3 - a2: the overall shrin- 
kage reduced by the effect of local fluctuations in the 
particle coordination. This fluctuation further grows 
out into a defect in the structure when dr{ - dtg2 > 0. 
If dt~ - d,fz < 0 one may expect that an instability 
will lead to locally enhanced porosity, but ultimately 
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stabilizes when the matrix is sufficiently dense to in- 
hibit reorganization. 

It should be stressed that this latter condition 
underestimates the severeness of instabilities for com- 
plete densification. The criterion should therefore be 
considered as indicative. 

The latter requirement for stability is 

3 
a 3 - - z  azexp(alt)  > 0. 

If this condition is solved by substitution of the para- 
meters: a 3 and a2 we obtain 

; 4 Z  

exp(alt) <,~ 3A-GoSz (19) 

where the right-hand side appears to be independent 
of the choice for the mechanism for densification. To 
evaluate the left-hand side, one should take the ex- 
plicit relation assuming any form of material transport 
and remembering that t measures the time lapse from 
the onset of the reorganization. It is of particular 
interest to find out how much densification we have 
until a situation is reached where condition 19 is 
violated. Substituting Equation 5 into Equation 6 we 
obtain 

kTR 3 
At - - -  28zA(Sz) (20a) 

4D1~7~ 

for lattice diffusion, and 

k T R  4 
At - - -  3(Sz)2A(6z) (20b) 

6Dbf~7co 

for grain boundary diffusion. 
Replacing in Equation 19, t for At: the growth time 

of the instability and working out Equation 19 with 
the help of the definition for a 1 and Equation 9a and 
9b, we arrive at 

4z 
~- > AGoSzexp(�89 ) (21) 

for both lattice and grain boundary diffusion. 
During this period further densification takes place 

which is equal to ASz. Defects are being formed when 
ASz and 8z are such that Condition 21 is violated. 

Condition 21 cannot be used, however, to evaluate 
the situation where a defect is allowed to form right 
from the beginning of sintering. This is most easily 
seen from Equation 15 where r 1 can only be taken 
constant for 8z fixed. In fact, during shrinkage, q starts 
at zero for 8z = 0 such that an instability growing 
due to the influence of AG O is more severe than 
Condition 21 suggests. 

In Appendix 5 approximate solutions for 
Equation 15 are derived in the case that the instability 
is allowed to grow from the beginning of sintering. 
The solutions, again, show a surprising similarity for 
both cases of lattice and grain boundary diffusion. 
Starting from these solutions and working out the 
stability requirement as before, the following condi- 
tion is obtained for both lattice and grain boundary 
diffusion 

4z ( G ~ z )  
- -  > AGoSzexp(�89 1 + - -  (22) 
3 
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Figure 5 The value for • as a function of the densiflcation parameter 
defining a stable and instable regime for growth of defects. Go = 7.3. 

which looks very similar to Equation 21. Taking 
Equation 22, setting Go = 7.3 [1] and AG O --- ~CGo, the 
condition can be graphically displayed as in Fig. 5 
showing the instable and stable zones. 

Values of ~: = �89 occur quite often [5] in a particle 
stacking which should lead to a defect formation 
already at a densification of 16%. It should further be 
stressed that the present analysis made has so far 
implicitly assumed th0t the stacking of particles, al- 
though it is rearranged, retains its integrity up to the 
condition expressed in Equation 22. 

If the reduction in coordination is found to occur 
over an extensive area, or has some local symmetry, 
we should expect that the instable field experiences no 
constraint at all resulting in the growth of a large 
defect (see also Fig. 6). 

dafect 
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Figure 6 Growth of a large defect under the influence of a variation 
in particle coordination. 



This defect growth rate is calculated in Appendix 5 
and reads 

dt~ - d,~z - RpqY [2@z3 AG~ exp(�89176 

x ( 1  + ~ ) - - ~ z 2 ]  (23) 

where AG O is the average value of AG o over the total 
length of the instable field, X, and dta is the receding 
rate of particles on opposite sides of the defect. A 
stability requirement based upon this condition is far 
more restrictive than in the former cases since the 
length is directly compared to the particle size such 
that X/2R >> 1. 

4. The condi t ion on the local 
homogene i ty  of the  s t ruc ture  

For the model developed until now, it was implicitly 
assumed that the structure undergoes a homogeneous 
shrinkage, while collective deviations from the average 
packing density lead to an extensive defect formation. 

Looking, however, on a limited scale, like a small 
number of individual particles, quite extensive fluctu- 
ations in the Go and C value may be found. These 
deviations may also lead to very local reorganizations 
and give rise to pore formation on a much finer scale 
than considered in the former case. The question now 
arising is the following: if we define an optimum 
structure as homogeneous and random, on what scale 
anywhere in the structure should we expect to find 
representative values to characterize the global stack- 
ing, with no chance for defect formation? 

The easiest way to arrive at a suitable criterion, 
taking into account local fluctuations, is to consider a 
single particle which experiences a force due to a local 
fluctuation in the densification parameter z but which 
is constrained in its movement by its immediate sur- 
roundings. 

z = l  

X 

Figure 7 Variation of local density leading to local reorganization 
and growth of small defects. 

The net displacement force again is given by 
Equation 11, but to find the contact pressure between 
this particle and its neighbour we should take into 
account the local constraint from the immediate hori- 
zontal neighbours (see Fig. 7). 

It is easily shown that the net contact force, AF, is 
given by 

AF = � 8 9  F(x + 2R)] = - -RaxF  (24) 

and the contact pressure p 

1 
p - ~xF (25) 

nR 

This pressure is responsible for local densification 
fluctuations, where it again has to be assumed that 
complete reorganization occurs leading to an iso- 
tropic pressure. Inserting Equations 10, 11 and 24 into 
Equation 25, making use of the definition of q and 
linearizing the result, we find after a very lengthy but 
straightforward calculation 

dt~ - dt6z - porlz627R [Go~,z  _ (3Go C)(~z) 2 

+ 2~xz~xGo 2 ( - 3R~- s + 5z C~xz 

+ (3Go - C)(~xz) 2 + 2~xC~xz 

for both cases of lattice and grain boundary diffusion. 
A number of very interesting conclusions can be 

derived from this equation. 

(a) Starting with O~z = 0 we see that instabilities 
can only occur when ~xxxGo # 0 and 6z # 0. As in 
Section 2, again, it follows that we should necessarily 
have some densification to onset an instability. 

(b) Once an instability has started, the first terms 
without 6z will rapidly grow. Taking dt~ = ( - 3/z)d,z 
we see that Equation 26 is of the shape of a time 
reversed diffusion equation. A fluctuation, once estab- 
lished, will grow into an instability quite easily. 

Although the equation has a very complicated struc- 
ture, unlike in the former case, we do not need to solve 
it explicitly to find a suitable stability criterion, since it 
contains more detailed information on the growth of 
the fluctuation itself. We assume that only non-cata- 
strophic defects occur when dt~ - d, Sz < 0 and fur- 
ther that local variations in z, G o and C are expected of 
the form 

�9 X X 
z = Azsm~,  G O = AGosin~- and C = ACsin~- 

Inserting these expressions into Equation 26, it is 
readily shown that the worst case occurs for sin x/X 
= 0 which leads to the criterion 

1 X 2 
AGoAz < 3R 2 (27) 

It should be stressed again that this surprisingly 
simple criterion is completely independent of the 
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choice of any of the transport mechanisms considered 
so far, Further, it is seen in Equation 27 that the 
distance over which the fluctuation in z and Go varies 
is compared with the radius of the individual particles. 
A further consequence of the requirement for stability 
is that nowhere in the structure a z value should be 
found less than one, which imposes a limit on AZ being 
equal to 8z. We then arrive at 

1 X 2 
AGo8z < 3 R 2 (27a) 

Taking a local variation of AGo equal to ½Go, which 
means that the primary coordination may be locally 
equal to half the average and 5z=0.16,  as in 
Section 3, the densification necessary for achieving a 
structure where local instabilities are not developing, 
we find that X > 1.8 R, which is about the size of a 
single particle. Defining now homogeneous random- 
ness, we should state that the value of G O and C should 
fluctuate over more than one cell in order to inhibit 
formation of defects on the scale of the particles. In 
other words, a structural unit containing more than 
eight particles should have an average Go which is 
equal to the global average of the stacking. 

5. Discussion 
A model is presented to give the following. 

(a) An analytical expression for the overall shrin- 
kage of a random stacking of particles assuming two 
different kinds of local transport mechanisms: lattice 
diffusion and grain boundary diffusion (Equations 9a 
and 9b). 

(b) A mathematical treatment of a collective reor- 
ganization process of a particle stacking where local 
variations in the coordination (or density) a r e  as- 
sumed, leading to a description of the evolution of 
a defect in a further homogeneously densifying 
structure. 

(c) A determination of the condition for local 
randomness defined by the average coordination of a 
local, but as small as possible, number of particles 
which is representative for the global, although collec- 
tively varying coordination. 

This model so far, has one limitation which merely 
defines the maximum value up to which it may be 
expected to present a description of the reality. The 
material to be transported away from the contact area 
is deposited in the neck zone or at the clear faces of the 
particles themselves. This process gives initially a 
slightly higher rate of change of the free surface energy 
with variations in the densification parameter, than 
calculated in the present case, but later on reduces this 
effect. For this reason, local destabilizing pressures are 
higher than assumed here at the beginning, but vanish 
when approaching full densification. It is estimated 
that when using a value of 6z < 15%, the model 
should give a suitable description of the reality. 

Good examples that visualize the collective reor- 
ganization during sintering are found in the literature 
[-4-6]. In the case of Petzow's and Exners [5] experi- 
ment, it is crearly ~,isible that the collective rearrange- 
ment of the particle stacking starts right at the be- 
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ginning and develops into large structural defects. 
From the presented microstructure in this latter result 
it may be found that zones occur where a value of 
AGo > ½Go and severe crack formation due to 
sintering takes place. 

The microstructures in the results of Liniger and 
Raj [4] show a number of possibilities. First, a homo- 
geneous random structure (M5) exhibits rapid and 
defect free sintering. A second structure (M3, 4) with 
spatially moderate, but significant, variations in AGo 
shows, as expected from Section 3, an initial decrease 
of the width of the defect, but later on a substantial 
increase of the defect size. Well organized packings 
give extremely high local values of ~xxGo with rather 
weak global variations (M1). In this particular case, 
the local model, presented in Section 4, tells us that we 
may expect a fine grained high density defect structure 
and a very tow sintering rate as a result. Further, 
Equation 23 applies to the cases of M3, 4 as well, 
predicting extensive crack opening during the process. 

A similar structure may be seen in the Figs 8 and 9 
where, although a normal green structure looks glo- 
bally homogeneous, high local variations in coordina- 
tion are present. These local variations have exten- 
sions of up to some times the particle size and lead 
therefore to local and collective particle rearrange- 
ment with a pore structure of high coordination as 
shown in Fig. 9. Prolonged sintering will not give a 

Figure 8 Loose stacking of ~-A1203 particles before firing. 

Figure 9 Reorganization and sintering of the stacking shown in 
Fig. 8 after 0.5 h at 1300 °C. 



Figure 10 The same material shown in Fig. 8 and after 2 h at 
1500 °C. 

further reorganization but is mainly necessary to re- 
duce the pore structure which is created by the reor- 
ganization effect. It may further be speculated that the 
grain structure finally obtained when sintering is com- 
pleted, is not much different from the reorganized 
structure, where zones with enhanced density form the 
individual grains as shown in Fig. 10. 

This idea might cast some new light upon the struc- 
tural changes occurring during sintering. Grain 
growth is preceded by locally enhanced densification 
due to fluctuations in coordination. This grain growth 
goes hand-in-hand with pore growth also due to this 
reorganization. The conclusion should be then that 
grain growth occurs already in an early stage of 
sintering, but overall shrinkage is reduced due to 
formation of a new system of porosity. 

As a concluding remark it should be emphasized 
that also the influence of an externally applied pres- 
sure P¢x is easily introduced into the criteria. We can 
simply set 7(P~x) = 7(Pex = O) + pexR/4 in the para- 
meter a 3 in Section 3 giving for Equation 21a 

4+ pR/7 > AGogzexp(½GoSz ) 1 + - -  
3 

and similarly in Section 4 for Equation 26a: 

AGo 8z < ~ ~2 1 + 

It can be concluded from this, in accordance with the 
above given arguments, that an externally applied 
pressure will suppress defect formation due to both 
global and local reorganization and increases the 
sintering rate substantially. 

Appendix 1. The transport equations 
Consider the situation as shown in Fig. 2 where two 
spherical particles have a common neck zone and are 
jointly developing a grain boundary. Vacancies are 
formed directly under the outer surface of the neck 
zone area and absorbed at the boundary. This sink 
should be homogeneous. Standard theory tells us that 
the total volume displaced per unit of time over the 
complete circumferential area of neck given by JfL is 
expressed as follows 

J~ = 4nDvACvdf~ (A1) 

r 2 

2 R  2 

Jf~ - 

leading to 

where ACv is the difference in vacancy concentration 
between the source and sink for the vacancies, d the 
width of the diffusion field and D v the vacancy diffu- 
sion coefficient. If we have a neck zone with a curva- 
ture, o, and a pressure p' acting on the grain boundary 
we find for ACv 

Co7~ Cop'~ 
ACv - + - -  (A2) 

k Tcy k T 

where Co is the equilibrium vacancy concentration 
under a flat, pressureless surface. By geometrical argu- 
ments it is further easily shown that (Figs 2 and 4) 

r 2 R 
cy - and p' = 

4R P 4o 

where p is the external pressure acting on the complete 
stacking of the particles. If we take Co ~ Cv and 
Onsager's relation: D = f~CvDv which couples matter 
transport to the diffusion of vacancies, it is found that 

J ~  d 4rcDf~/~ ~R_) - ~7 + (A3) 

For the case of lattice diffusion, we should take 
D = D l and d = 2~cy where ~ should be close to 2 and 
for grain boundary diffusion we set D = D b and d = co, 
an effective width of the diffusion zone where the 
actual transport takes place. 

Further geometrical arguments tell us that 

AL z - -  1 
- 6z and 

2R z 

2rcr 3 
- - - d , r  

R 

and 

( 4ctDlf~yt ~ 1/2 
6z = \ ~ /] (A4a) 

(6Du (oynt ~1/3 
6z = \ R4kT ) (A4b) 

for lattice and grain boundary diffusion respectively. 
Equations A4a and A4b are derived differently in 
Section 2. 

A p p e n d i x  2 .  L o c a l  s t r e s s  r e d i s t r i b u t i o n  
We may write Equation A2 in the following way 

CoQ 
ACv - ~ ( p , + p ; )  

where Pi is seen as the pressure in the ith grain bound- 
ary in one cell due to the curvature in ith the outer 
neck zone and p; is the pressure due to the force acting 
externally because of mismatch effects. 

The total contact force F working over the cell is 
equal to 

F = 2 Z r c r  2 + ~p ; 'T t r  2 
i t~i 

= ~/4rcyR + ~/p i .~r  2 = 4rcRTG(z ) 
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where use is made of the result of the geometrical 
arguments and the requirement that the stress re- 
distribution at equilibrium should lead to 

i 

The average contact pressure then is equal to 

4nRyG(z )  p(z) - O(z) 
4"/z 2 Go + C ( z -  1) 

- R Go(z 2 - 1) + C(2z  3 - z 2 + �89 (A5) 

Adopting now this value for the average contact pres- 
sure for a cell where we take in (A3): y = ?i = P~i 
= fir 2 /4R  with p = 0 for each individual contact area, 

we can take the two contributions for both lattice and 
grain boundary diffusion together and find for the 
volume transported per particle over the ith contact 
zone 

d V  i _ 7~p~- ~DIR 1 ~2"~ + 2Db0)] (A6) 
dt k T  [ " ( - z 2 J  

Since we want to know the statistical mean for the 
densification we should integrate over all contact 
zones for 1 < ~ < z, thus 

x f f~  ocDiR 1 - 
d, AV - kT  ,Jr L k 

+ 2DbCOJ~, G(x) dz (A7) 

If we introduce Equation 4 into (A7) and attribute the 
various contributions to d,z to lattice and grain 
boundary diffusion we find 

4D~f~zq'[G o + C(z - 1)]z 4 
dtz  = k T R 3 [ G  ~ + �88 2 _ 1)](z2 _ 1)' (A8a) 

for lattice diffusion and 

The total free energy change due to densification and 
instabilities will be 

Au=f fvdAU(r)dr-  2 C I 6 z V  

(C1 - �89 - 4 8 Z ) f v ~ 2 ( r ) d r  (All)  + 

where Condition A10 has been applied. 
Taking Artz's values Go = 7.3 and C = 15.5 we see 

that all coefficients can be taken positive so that for 8z 
= 0 the occurrence of reorganization is energetically 

unfavourable. The energy necessary for rearrange- 
ment, however, will have to be delivered by the den- 
sifying field. This has been implicitly assumed in the 
models developed in Sections 3 and 4. On the basis of 
this consideration, it should be emphasized that a 
single particle during rearrangement will tend to stay 
midway between its neighbours: each particle stays in 
its own potential well. The free energy given in Equa- 
tion A9 should, therefore, be attributed to the poten- 
tial well as an entity (identified by the cell itself). An 
instability, as assumed by the function ~(r), therefore 
is the collective rearrangement of the cell structure 
rather than the particles. 

Appendix 4. Reorganization 
Reorganization for the present model means that par- 
ticles move collectively under an external force acting 
in one direction. The stacking is continuously chang- 
ing in such a way that besides shear forces, also an 
isotropical pressure is generated which causes local 
isotropical densification. Under such circumstances 
the vectorial sum of the displacements of the particles 
is in the direction of the applied force. 

If O is the surface area perpendicular to the force 
applied, Al is some arbitrary distance in the direction 

8DbO)~y[G o + C ( z  - 1)]2z 6 

dtz  = kTR4[Go  + �88 2 - 1)](z 2 - 1)[Go(z 2 - 1) + C(2z  3 - z 2 + �89 

for grain boundary diffusion. 
Upon linearization we find the expressions given in 

Section 2, Equations 7a and 7b. 

Appendix 3. Free energy consideration 
In the present analysis we start from Equation 10 and 
write for the free energy densitY 

1 
U(r) = Uo + z~(r) (C1 - �89 - ~Czz (r )  (A9) 

with C1 = 7xR2Go,  Cz = ~'TtR2C and U o is a constant. 
To know the complete energy balance, the analysis 

will have to be taken over three spatial dimensions 
expressed by r = (x, y, z) and we define a global den- 
sifying field 6z with a spatial variation s(r) by z(r) = 1 

+ 8z + e(r). 
The auxiliary condition will be that 

fv S(r)dr = 0 (A10) 

(A8b) 

Od,Al  = 

so that 

of the force and N is the number of particles in the 
volume A V = OAf, we find that the relative change of 
the average centre-to-centre distance of the particles 
measured in the direction of the applied force becomes 

1 
d,~ = Al dtA1 

With the requirement of reorganization leading to 
isotropic pressure we then have 

AVdt~  = d t A V  = d t N / p  

- - ( N / p 2 ) d t p  = - (AV/p)dtp 

_ _ 3AVz2(po /p)drz  = - (3AV/ z )d t z  

3 
dt~ - dtz (A12) 

z 

It should be stressed that also an additional increase 
in density (or coordination) may occur as an explicit 
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consequence of the reorganization itself. This effect, 
however, depends strongly on the original particle 
density Go and the ability of particles to slide across 
each other. At a high initial density (G o more than half 
of the theoretical value for a fully dense structure), this 
contribution will not be very high. 

At lower densities it should be considered that 
Equation A12 is approximate and underestimates the 
actual effect. 

Appendix  5. Solut ions for the Zo(t ) 
behaviour 

Starting from Equation 15 

dtzo _ 7 (2Gozo - AGo~z) 
3 R z  2 por l  

we get by using Equations (7a) and (9a) or Equations 
(Tb) and (9b) for small values of ~Sz 

d~z o = blzo/t 1/2 - -  b 2 (A13a) 

for lattice diffusion and for grain boundary diffusion 

dtzo = C l Z o / t  2/3 - c 2 / t  1/3 (A13b) 

Approximate solutions are found by standard proced- 
ures and read 

Z o --  b 2t exp(2bl t 1/2) (A14a) 

and 
z o - -  3 c z t 2 / 3 e x p ( 3 c l t l / 3  ) (A14b) 

for lattice and grain boundary diffusion respectively. 

Elementary manipulations then give 

2 b l  t 1/2 = 3cl t 1/3 = �89 

and 

b2t _ yt6z AGo 3C2t2/3 -- yt6z AGo 
3Rpoq 2Rpoq 

Applying the requirement for stability that 3 
- -  z d t z  o 

-d,6z < 0 we obtain by differentiating Equations 
A14a and A14b using also the expression for dt6z 
given in Section 3 

> AGo~zexp(�89 1 + (A15) 

where again it appears that the criteria are the same 
for both lattice and grain boundary diffusion. 

A full loss of constraint at the location where dtz has 
its minimum means that the centre-to-centre distance 
of the particles at the opposite edges of the defect is the 
sum of the relative movements of all the particles from 
the defect. 

The receding rate is given by 

1 C zl~ = o~ 3 
I 2R jz(e;z =0) z d'z~ (a16) 

where x runs along a line of length X from the defect to 
the location where the relative movement is equal to 
zero. 

The relative defect growth rate then is calculated by 
use of Equations (A16), (A13a) and (-b), the expression 
for d,~z in Section 3 and the fact that the problem is 
symmetric in z. The result is given in Equation 23. 
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